login
A114360
Let M(n) be the n X n matrix m(i,j)=min(i,j) for 1<=i,j<=n then a(n) is the trace of M(n)^(-8).
3
1, 2207, 12389, 25147, 38017, 50887, 63757, 76627, 89497, 102367, 115237, 128107, 140977, 153847, 166717, 179587, 192457, 205327, 218197, 231067, 243937, 256807, 269677, 282547, 295417, 308287, 321157, 334027, 346897, 359767, 372637, 385507
OFFSET
1,2
COMMENTS
More generally for any n>=floor((m+1)/2) the trace of M(n)^(-m) = binomial(2*m,m)*n-2^(2*m-1)+binomial(2*m-1,m).
FORMULA
a(n) = 12870*n-26333, with n> 3, a(1)=1, a(2)=2207, a(3)=12389.
a(n) = 2*a(n-1)-a(n-2) for n>5. G.f.: x*(1+2205*x+7976*x^2+2576*x^3+112*x^4)/(1-x)^2. [Colin Barker, Mar 18 2012]
MATHEMATICA
Rest@ CoefficientList[Series[x (1 + 2205 x + 7976 x^2 + 2576 x^3 + 112 x^4)/(1 - x)^2, {x, 0, 32}], x] (* Michael De Vlieger, Feb 22 2021 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Feb 09 2006
STATUS
approved