OFFSET
1,1
COMMENTS
Pythagorean triples of exact isosceles triangles do not exist because 2a^2 = c^2 has no integer solution. a^2 + (a+1)^2 = c^2 are nearly isosceles triangles and give a recursive series.
LINKS
C.C. Chen and T.A. Peng, Classroom note: Almost-isosceles right-angled triangles, Australasian Journal of Combinatorics, Volume 11(1995), pp. 263-267. See p. 266.
FORMULA
a^2 + (a+1)^2 = c^2, a(n) = 3a(n-1) + 2c(n-1) + 1, c(n) = 4a(n-1) + 3c(n-1) + 2.
EXAMPLE
119^2 + 120^2 = 169^2.
PROG
a(1):= 3 c(1):= 5 read m C m is infinite but limited by integer overflow of c(n) for n:=2 until m step 1 a(n):= 3*a(n-1) + 2*c(n-1) + 1 c(n):= 4*a(n-1) + 3*c(n-1) + 2 print a(n), a(n)+1, c(n) next n end
CROSSREFS
KEYWORD
easy,nonn,tabf
AUTHOR
Heinrich Baldauf (heinbald25(AT)web.de), Feb 07 2006
EXTENSIONS
More terms from Robert Hutchins, Jun 10 2009
STATUS
approved