This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114265 Smallest prime p greater than prime(n) such that 2*prime(n) + p is a prime. 3
 3, 5, 7, 17, 19, 17, 19, 23, 37, 31, 41, 53, 67, 53, 73, 61, 61, 71, 89, 97, 83, 83, 97, 103, 113, 109, 107, 139, 113, 127, 167, 139, 157, 179, 151, 197, 173, 173, 223, 211, 199, 239, 211, 227, 199, 233, 239, 227, 229, 233, 277, 241, 251, 271, 283, 271, 271, 281 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Note that p is next prime after prime(n) iff prime(n) is a term in A173971. - Zak Seidov, Feb 11 2015 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 EXAMPLE n=1: 2*prime[1]+3=2*2+3=7 is prime, so a(1)=3; n=2: 2*prime[2]+5=2*3+5=11 is prime, so a(2)=5; ... n=4: 2*prime[4]+3=2*7+3=17 is prime, so a(4)=17. MATHEMATICA Table[p1 = Prime[n1]; n2 = 1; p2 = Prime[n1 + n2]; While[cp = 2*p1 + p2; ! PrimeQ[cp], n2++; p2 = Prime[n1 + n2]]; p2, {n1, 1, 200}] PROG (Haskell) a114265 n = head [p | let (q:qs) = drop (n - 1) a000040_list, p <- qs,                       a010051 (2 * q + p) == 1] -- Reinhard Zumkeller, Oct 31 2013 (PARI) a(n)=forprime(p=prime(n)+1, , if(isprime(2*prime(n)+p), return(p))) vector(100, n, a(n)) \\ Derek Orr, Feb 11 2015 CROSSREFS Cf. A114227, A114230, A073703, A114235, A114262. Cf. A010051, A000040, A173971. Sequence in context: A031441 A078150 A276044 * A258195 A110358 A038971 Adjacent sequences:  A114262 A114263 A114264 * A114266 A114267 A114268 KEYWORD easy,nonn AUTHOR Lei Zhou, Nov 20 2005 EXTENSIONS Edited definition to conform to OEIS style. - Reinhard Zumkeller, Oct 31 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 20 14:22 EDT 2019. Contains 325185 sequences. (Running on oeis4.)