login
A114262
p is the smallest prime that is greater than prime(n) such that prime(n)+2*p is a prime.
7
5, 7, 11, 13, 17, 31, 41, 37, 37, 41, 47, 43, 47, 67, 73, 61, 83, 83, 79, 83, 89, 97, 97, 107, 103, 107, 151, 137, 127, 131, 139, 151, 191, 157, 179, 167, 173, 223, 199, 181, 191, 193, 197, 211, 227, 233, 227, 241, 257, 277, 307, 251, 313, 277, 283, 271, 293, 281
OFFSET
2,1
LINKS
EXAMPLE
n=2: prime[2]=3; 3+2*5=13 is prime, so a(2)=5;
n=3: prime[3]=5; 5+2*7=19 is prime, so a(3)=7;
...
n=7: prime[7]=17; 17+2*19=55 is not prime
17+2*23=63 is not prime
...
17+2*31=79 is prime, so a(7)=31.
MATHEMATICA
Table[p1 = Prime[n1]; n2 = 1; p2 = Prime[n1 + n2]; While[cp = p1 + 2* p2; ! PrimeQ[cp], n2++; p2 = Prime[n1 + n2]]; p2, {n1, 2, 201}]
PROG
(Haskell)
a114262 n = head [q | let (p:ps) = drop (n - 1) a000040_list,
q <- ps, a010051 (p + 2 * q) == 1]
-- Reinhard Zumkeller, Oct 29 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Lei Zhou, Nov 20 2005
EXTENSIONS
Edited definition to conform to OEIS style. - Reinhard Zumkeller, Oct 31 2013
STATUS
approved