This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114243 a(n) = (n+1)(n+2)^2*(n+3)(n+4)(3n+5)/240. 0

%I

%S 1,12,66,245,714,1764,3864,7722,14355,25168,42042,67431,104468,157080,

%T 230112,329460,462213,636804,863170,1152921,1519518,1978460,2547480,

%U 3246750,4099095,5130216,6368922,7847371,9601320,11670384,14098304,16933224,20227977

%N a(n) = (n+1)(n+2)^2*(n+3)(n+4)(3n+5)/240.

%C KekulĂ© numbers for certain benzenoids.

%D S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (pp. 167-169, Table 10.5/II/3).

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).

%F G.f.: (1 + 5*x + 3*x^2)/(1-x)^7.

%F a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - _Wesley Ivan Hurt_, May 03 2015

%p a:=n->(n+1)*(n+2)^2*(n+3)*(n+4)*(3*n+5)/240: seq(a(n),n=0..35);

%t CoefficientList[Series[(1+5x+3x^2)/(1-x)^7,{x,0,40}],x] (* _Harvey P. Dale_, Feb 19 2011 *)

%t Table[(n + 1) (n + 2)^2 (n + 3) (n + 4) (3 n + 5) / 240, {n, 0, 50}] (* _Vincenzo Librandi_, May 03 2015 *)

%o (MAGMA) [(n+1)*(n+2)^2*(n+3)*(n+4)*(3*n+5)/240 : n in [0..50]]; // _Wesley Ivan Hurt_, May 03 2015

%K nonn,easy

%O 0,2

%A _Emeric Deutsch_, Nov 18 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 02:47 EDT 2019. Contains 323539 sequences. (Running on oeis4.)