This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114233 Smallest number m such that 2*prime(n) + prime(m) is a prime. 5
 2, 2, 4, 2, 2, 2, 4, 2, 3, 3, 4, 2, 2, 2, 6, 3, 2, 4, 2, 3, 4, 2, 2, 11, 3, 6, 3, 2, 2, 4, 2, 2, 6, 3, 2, 3, 2, 2, 11, 3, 4, 2, 2, 2, 5, 2, 2, 2, 6, 6, 3, 4, 4, 11, 2, 3, 2, 4, 2, 4, 2, 8, 3, 4, 5, 2, 4, 2, 2, 14, 3, 3, 2, 2, 8, 2, 4, 2, 8, 5, 8, 5, 2, 14, 6, 3, 4, 2, 2, 6, 2, 11, 5, 2, 2, 4, 2, 3, 2, 2, 2, 6, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 3..10000 EXAMPLE n=3: 2*prime(3)+prime(2)=2*5+3=13 is prime, so a(3)=2; n=4: 2*prime(4)+prime(2)=2*7+3=17 is prime, so a(4)=2; n=5: 2*prime(5)+prime(2)=2*11+3=25 is not prime ... 2*prime(5)+prime(4)=2*11+7=29 is prime, so a(5)=4. MATHEMATICA Table[p1 = Prime[n1]; n2 = 1; p2 = Prime[n2]; While[cp = 2*p1 + p2; ! PrimeQ[cp], n2++; If[n2 >= n1, Print[n1]]; p2 = Prime[n2]]; n2, { n1, 3, 202}] snm[n_]:=Module[{m=1, p=2Prime[n]}, While[!PrimeQ[p+Prime[m]], m++]; m]; Array[ snm, 110, 3] (* Harvey P. Dale, Sep 30 2017 *) PROG (Haskell) a114233 n = head [m | m <- [1 .. n],                       a010051' (2 * a000040 n + a000040 m) == 1] -- Reinhard Zumkeller, Oct 31 2013 CROSSREFS Cf. A073703, A114227, A114228, A114231. Cf. A010051, A000040. Sequence in context: A092188 A097884 A094818 * A279047 A063086 A077636 Adjacent sequences:  A114230 A114231 A114232 * A114234 A114235 A114236 KEYWORD easy,nonn AUTHOR Lei Zhou, Nov 20 2005 EXTENSIONS Edited definition to conform to OEIS style. - Reinhard Zumkeller, Oct 31 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 15:25 EDT 2019. Contains 323532 sequences. (Running on oeis4.)