%I #20 Nov 29 2022 01:32:55
%S 1,1,2,2,3,3,3,3,4,4,5,5,5,5,4,4,5,5,7,7,8,8,7,7,7,7,8,8,7,7,5,5,6,6,
%T 9,9,11,11,10,10,11,11,13,13,12,12,9,9,9,9,12,12,13,13,11,11,10,10,11,
%U 11,9,9,6,6,7,7,11,11,14,14,13,13,15,15,18,18,17,17,13,13,14,14,19,19,21
%N Diagonal sums of number triangle A114213.
%C Conjecture: a(n) = A007306(floor(n/2)+1). - _Georg Fischer_, Nov 28 2022
%H Georg Fischer, <a href="/A114214/b114214.txt">Table of n, a(n) for n = 0..1000</a>
%H Jeffrey Shallit and Lukas Spiegelhofer, <a href="https://arxiv.org/abs/1710.06203">Continuants, run lengths, and Barry's modified Pascal triangle</a>, arXiv:1710.06203 [math.CO], 2017.
%F a(n) = Sum_{k=0..floor(n/2)} mod(Sum_{j=0..n-2k} C(k, j) C(n-2k, j) (1+(-1)^j)/2, 2). (corrected by _Jeffrey Shallit_, May 18 2016)
%o (PARI) a(n) = sum(k=0, n\2, sum(j=0, n-2*k, binomial(k, j)*binomial(n-2*k, j)*(1+(-1)^j)/2) % 2); \\ _Michel Marcus_, Jun 06 2021
%Y Cf. A007306, A114213.
%K easy,nonn
%O 0,3
%A _Paul Barry_, Nov 17 2005