%I #11 Jul 23 2017 02:41:21
%S 24,120,240,840,840,720,2520,1320,5280,6240,9360,3960,10920,3360,
%T 18480,14280,24400,17160,6840,31920,10920,26520,43680,50160,16320,
%U 35880,57960,73920,38760,15600,46200,100800,107640,122400,138600,128520,148200
%N When the n-th term of this sequence is added to or subtracted from the square of the n-th prime of the form 4k + 1 (i.e., A002144(n)), the result in both cases is a square.
%C This sequence and A002144 give rise to a class of monic polynomials x^2 + bx + c where b = +- A002144(n) and c = +- a(n)/4 that will factor over the integers regardless of the sign of c. For example, x^2 - 13x - 30 and x^2 - 13x + 30 are two such polynomials. Further polynomials with this property can be found by transforming the roots.
%e a(2) = 120 and A002144(2) = 13. 13^2 - 120 = 7^2 and 13^2 + 120 = 17^2.
%o (PARI) getpr(n) = {nb = 0; p = 2; while (nb != n, p = nextprime(p+1); if ((p % 4) == 1, nb++);); p;}
%o a(n) = {p = getpr(n); psq = p^2; k = 1; while (!issquare(psq+k) || !issquare(psq-k), if (k>psq, k = 0; break); k++;); k;} \\ _Michel Marcus_, Sep 25 2013
%Y Cf. A002144.
%K nonn
%O 1,1
%A Owen Mertens (owenmertens(AT)missouristate.edu), Nov 16 2005
%E Definition corrected by _Zak Seidov_, Jul 20 2010