login
Riordan array (1/(1-x), x*(1+x)^2/(1-x)^2).
6

%I #23 Sep 08 2022 08:45:23

%S 1,1,1,1,5,1,1,13,9,1,1,25,41,13,1,1,41,129,85,17,1,1,61,321,377,145,

%T 21,1,1,85,681,1289,833,221,25,1,1,113,1289,3653,3649,1561,313,29,1,1,

%U 145,2241,8989,13073,8361,2625,421,33,1,1,181,3649,19825,40081,36365,16641,4089,545,37,1

%N Riordan array (1/(1-x), x*(1+x)^2/(1-x)^2).

%C Row sums are A099463(n+1). Diagonal sums are A116404.

%C Triangle formed of even-numbered columns of the Delannoy triangle A008288. - _Philippe Deléham_, Mar 11 2013

%H G. C. Greubel, <a href="/A114123/b114123.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n, k) = Sum_{j=0..n} C(2*k,n-k-j)*C(n-k,j)*2^(n-k-j).

%F T(n, k) = Sum_{j=0..n-k} C(2*k,j)*C(n-k,j)*2^j.

%F Sum_{k=0..n} T(n, k) = A099463(n+1).

%F Sum_{k=0..floor(n/2)} T(n, k) = A116404(n).

%F T(n, k) = hypergeom([-2*k, k-n], [1], 2). - _Peter Luschny_, Sep 16 2014

%F T(n, n-k) = A184883(n, k). - _G. C. Greubel_, Nov 20 2021

%e Triangle begins

%e 1;

%e 1, 1;

%e 1, 5, 1;

%e 1, 13, 9, 1;

%e 1, 25, 41, 13, 1;

%e 1, 41, 129, 85, 17, 1;

%e 1, 61, 321, 377, 145, 21, 1;

%p T := (n,k) -> hypergeom([-2*k, k-n], [1], 2);

%p seq(seq(round(evalf(T(n,k),99)),k=0..n),n=0..9); # _Peter Luschny_, Sep 16 2014

%t T[n_, k_] := Hypergeometric2F1[-2k, k-n, 1, 2];

%t Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* _Jean-François Alcover_, Jun 13 2019 *)

%o (Magma)

%o T:= func< n, k | (&+[Binomial(2*k, j)*Binomial(n-k, j)*2^j: j in [0..n-k]]) >;

%o [T(n, k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Nov 20 2021

%o (Sage)

%o def A114123(n,k): return round( hypergeometric([-2*k, k-n], [1], 2) )

%o flatten([[A114123(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Nov 20 2021

%Y Cf. A008288, A099463 (row sums), A116404 (diagonal sums), A184883.

%K easy,nonn,tabl

%O 0,5

%A _Paul Barry_, Feb 07 2006, Oct 22 2006