login
A114095
Number of partitions of n into parts that are distinct mod 7.
2
1, 1, 2, 2, 3, 4, 5, 6, 7, 10, 10, 13, 16, 18, 21, 24, 31, 31, 38, 44, 49, 56, 62, 76, 76, 90, 100, 113, 126, 136, 161, 161, 186, 201, 234, 252, 267, 308, 308, 349, 370, 449, 462, 483, 546, 546, 609, 637, 813, 792
OFFSET
1,3
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 1..1000
EXAMPLE
a(7)=5 because there are 5 such partitions of 7: {7}, {1,6}, {2,5}, {3,4}, {4,2,1}.
MATHEMATICA
<< DiscreteMath`Combinatorica`; np[n_]:= Length@Select[Mod[ #, 7]& /@ Partitions[n], (Length@# == Length@Union@#)&]; lst = Array[np, 50] (* corrected by Seth A. Troisi, May 17 2022 *)
PROG
(PARI) a(n) = my(nb=0); forpart(p=n, if (#p == #Set(apply(x->(x%7), Vec(p))), nb++)); nb; \\ Michel Marcus, May 18 2022
CROSSREFS
Sequence in context: A086740 A120161 A100665 * A301513 A066639 A370808
KEYWORD
nonn
AUTHOR
Giovanni Resta, Feb 06 2006
STATUS
approved