login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A114087 Triangle read by rows: T(n,k) is the number of partitions of n whose tails below their Durfee squares have size k (n>=1; 0<=k<=n-1). 4
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 2, 3, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 4, 3, 5, 3, 4, 1, 1, 1, 5, 4, 5, 5, 4, 4, 1, 1, 1, 6, 5, 7, 5, 7, 4, 5, 1, 1, 1, 7, 6, 9, 7, 7, 7, 5, 5, 1, 1, 1, 9, 7, 11, 10, 10, 7, 9, 5, 6, 1, 1, 1, 10, 9, 13, 12, 14, 10, 9, 9, 6, 6, 1, 1, 1, 12, 10, 17, 15, 17, 15 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,7

COMMENTS

Row sums yield A000041. Column 0 is A003114. Sum_{k=0..n-1} k*T(n,k) = A116365(n).

REFERENCES

G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).

G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

FORMULA

G.f.: Sum_(q^(k^2)/Product_((1-q^j)(1-(t*q)^j), j=1..k), k=1..infinity).

EXAMPLE

T(6,2) = 3 because we have [4,1,1], [2,2,2] and [2,2,1,1] (the bottom tails are [1,1], [2] and [1,1], respectively, each being a partition of 2).

MAPLE

g:=sum(z^(k^2)/product((1-z^j), j=1..k)/product((1-(t*z)^i), i=1..k), k=1..20): gserz:=simplify(series(g, z=0, 30)): for n from 1 to 14 do P[n]:=coeff(gserz, z^n) od: for n from 1 to 14 do seq(coeff(t*P[n], t^j), j=1..n) od; # yields sequence in triangular form

# second Maple program:

b:= proc(n, i) option remember;

`if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))

end:

T:= (n, k)-> add(b(k, d)*b(n-d^2-k, d), d=0..floor(sqrt(n))):

seq(seq(T(n, k), k=0..n-1), n=1..20); # Alois P. Heinz, Apr 09 2012

MATHEMATICA

b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]] ]; T[n_, k_] := Sum[b[k, d]*b[n-d^2-k, d], {d, 0, Floor[Sqrt[n]]}]; Table[Table[ T[n, k], {k, 0, n-1}], {n, 1, 20}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)

CROSSREFS

Cf. A000041, A003114, A115994, A115995, A116365, A114088, A114089.

Sequence in context: A334607 A166240 A219347 * A215521 A008284 A114088

Adjacent sequences: A114084 A114085 A114086 * A114088 A114089 A114090

KEYWORD

nonn,tabl

AUTHOR

Emeric Deutsch, Feb 12 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 19:04 EST 2022. Contains 358588 sequences. (Running on oeis4.)