login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A114057 Start of record gap in odd semiprimes A046315. 0
9, 25, 39, 95, 267, 2369, 6559, 8817, 13705, 15261, 21583, 35981, 66921, 113009, 340891, 783757, 872219, 3058853, 3586843, 5835191, 12345473, 108994623, 248706917, 268749691, 679956119, 709239621, 3648864859, 3790337723, 4171420481, 33955869693, 34279038379 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

3 of the first 5 values of record gaps in odd semiprimes are also record merits = [A046315(k+1)-A046315(k)]/log(A046315(k)]/), namely: (15 - 9) / log(9) = 6.28770982; (111 - 95) / log(95) = 8.09010923; (287 - 267) / log(267) = 8.24228608. It is easy to prove that there are gaps of arbitrary length in even semiprimes (A100484); can we prove that there are gaps of arbitrary length in odd semiprimes (A046315) and in semiprimes (A001358)?

The record gaps have lengths 6, 8, 10, 16, 20, 22, 24, 26, 28, 32, 36, 38, 40, 44, 50, 52, 60, 64, 70, 74. - T. D. Noe, Feb 03 2006

LINKS

Table of n, a(n) for n=1..31.

FORMULA

{a(n)} = {A046315(k) such that A046315(k+1)-A046315(k) is a record}.

EXAMPLE

a(1) = A046315(2)-A046315(1) = 15 - 9 = 6.

a(2) = A046315(5)-A046315(4) = 33 - 25 = 8.

a(3) = A046315(8)-A046315(7) = 49 - 39 = 10.

a(4) = A046315(20)-A046315(19) = 111 - 95 = 16.

a(5) = A046315(55)-A046315(54) = 287 - 267 = 20.

MATHEMATICA

f[n_] := Block[{k = n + 2}, While[ Plus @@ Last /@ FactorInteger@k != 2, k += 2]; k]; lst = {}; d = 0; a = b = 9; Do[{a, b} = {b, f[a]}; If[b - a > d, d = b - a; AppendTo[lst, a]], {n, 10^8}]; lst (* Robert G. Wilson v *)

CROSSREFS

Cf. A001358, A046315, A065516, A085809, A100484, A114412, A114021.

Sequence in context: A147403 A241764 A044451 * A227518 A031036 A291259

Adjacent sequences:  A114054 A114055 A114056 * A114058 A114059 A114060

KEYWORD

easy,nonn

AUTHOR

Jonathan Vos Post, Feb 02 2006

EXTENSIONS

More terms from Robert G. Wilson v and T. D. Noe, Feb 03 2006

a(23)-a(28) from Donovan Johnson, Mar 14 2010

a(29)-a(31) from Donovan Johnson, Oct 20 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 26 00:37 EDT 2019. Contains 321479 sequences. (Running on oeis4.)