The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114043 Take an n X n square grid of points in the plane; a(n) = number of ways to divide the points into two sets using a straight line. 20
 1, 7, 29, 87, 201, 419, 749, 1283, 2041, 3107, 4493, 6395, 8745, 11823, 15557, 20075, 25457, 32087, 39725, 48935, 59457, 71555, 85253, 101251, 119041, 139351, 161933, 187255, 215137, 246691, 280917, 319347, 361329, 407303 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Also, half of the number of two-dimensional threshold functions (A114146). The line may not pass through any point. This is the "labeled" version - rotations and reflections are not taken into account (cf. A116696). The number of ways to divide a (2n) X (2n) grid into two sets of equal size is given by 2*A099957(n). - David Applegate, Feb 23 2006 All terms are odd: the line that misses the grid contributes 1 to the total and all other lines contribute 2, 4 or 8, so the total must be odd. What can be said about the 3-D generalization? - Max Alekseyev, Feb 27 2006 LINKS T. D. Noe, Table of n, a(n) for n=1..1000 Max A. Alekseyev. On the number of two-dimensional threshold functions. SIAM J. Disc. Math. 24(4), 2010, pp. 1617-1631. doi:10.1137/090750184 M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090. See Eq. (11). FORMULA Let V(m,n) = Sum_{i=1..m, j=1..n, gcd(i,j)=1} (m+1-i)*(n+1-j); then a(n+1) = 2*(n^2 + n + V(n,n)) + 1. - Max Alekseyev, Feb 22 2006 a(n) ~ (3/pi^2) * n^4. - Max Alekseyev, Feb 22 2006 a(n) = A141255(n) + 1. - T. D. Noe, Jun 17 2008 EXAMPLE Examples: the two sets are indicated by X's and o's. a(2) = 7: XX oX Xo XX XX oo oX XX XX XX Xo oX XX oX -------------------- a(3) = 29: XXX oXX ooX ooo ooX ooo XXX XXX XXX XXX oXX oXX XXX XXX XXX XXX XXX XXX -1- -4- -8- -4- -4- -8- Total = 29 -------------------- a(4)= 87: XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXo XXXo XXXo XXoo XXoo XXXX XXXo XXoo Xooo oooo XXoo Xooo oooo Xooo oooo --1- --4- --8- --8- --4- --4- --8- --8- --8- --8- XXXX XXXX XXXX XXXX XXXX XXXo XXXX XXXX XXXo XXXo XXoo Xooo oooo Xooo XXoo Xooo oooo oooo oooo oooo --4- --8- --2- --4- --8- Total = 87. -------------------- MATHEMATICA a[n_] := 2*Sum[(n - i)*(n - j)*Boole[CoprimeQ[i, j]], {i, 1, n - 1}, {j, 1, n - 1}] + 2*n^2 - 2*n + 1; Array[a, 40] (* Jean-François Alcover, Apr 25 2016, after Max Alekseyev *) CROSSREFS Cf. A114499, A115004, A115005, A116696 (unlabeled case), A114531, A114146. Cf. A099957. The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020 Sequence in context: A079796 A242727 A229795 * A331767 A166189 A001779 Adjacent sequences:  A114040 A114041 A114042 * A114044 A114045 A114046 KEYWORD nonn,nice AUTHOR Ugo Merlone (merlone(AT)econ.unito.it) and N. J. A. Sloane, Feb 22 2006 EXTENSIONS More terms from Max Alekseyev, Feb 22 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 11:17 EDT 2020. Contains 337268 sequences. (Running on oeis4.)