login
Least prime such that the n-th partial concatenation is a multiple of the n-th prime.
3

%I #8 Mar 20 2015 23:21:39

%S 2,7,5,17,71,23,2,53,151,191,181,61,47,61,163,373,23,29,179,167,353,

%T 691,37,7,79,43,7,73,683,757,1259,433,113,1523,643,19,73,383,1907,89,

%U 2423,457,223,2713,71,3253,191,17,1069,353,1481,1433,787,1009,1753,557,3001

%N Least prime such that the n-th partial concatenation is a multiple of the n-th prime.

%C In the first 750 terms, the primes 3,11,41,59,83,97,101,109,131,149,157,173,193,197,211,227, ..., have not appeared. - _Robert G. Wilson v_

%e 2 divides 2, 3 divides 27, 5 divides 275.

%t a[n_] := a[n] = Block[{q = Flatten[IntegerDigits /@ Table[a[i], {i, n - 1}]], p = Prime[n], k = 1}, While[Mod[FromDigits@Join[q, IntegerDigits@Prime@k], p] != 0, k++ ]; Prime[k]]; Array[a, 57] (* _Robert G. Wilson v_ *)

%Y See A133566 for another version.

%Y Cf. A100759, A095242, A114026.

%K base,nonn

%O 1,1

%A _Amarnath Murthy_, Nov 13 2005

%E More terms from _Robert G. Wilson v_, Nov 19 2005

%E Definition corrected by _David Wasserman_, Mar 04 2008