login
A113977
Expansion of (eta(q)^3*eta(q^10)^6)/(eta(q^2)^2*eta(q^5)^7) in powers of q.
0
1, -3, 2, -1, 5, 2, -18, 9, -1, 25, 4, -74, 36, -2, 90, 7, -240, 115, -4, 275, 12, -684, 318, -6, 745, 20, -1772, 810, -10, 1850, 32, -4263, 1928, -16, 4310, 49, -9684, 4332, -24, 9525, 74, -20980, 9306, -36, 20155, 110, -43674, 19238, -53, 41125, 160, -87876, 38460, -76, 81300, 230
OFFSET
1,2
REFERENCES
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 110, Eq. (40.49).
FORMULA
Euler transform of period 10 sequence [ -3, -1, -3, -1, 4, -1, -3, -1, -3, 0, ...].
G.f.: x(Product_{k>0} (1+x^(5k))^6*(1-x^k)/ ((1+x^k)^2*(1-x^(5k)))).
PROG
(PARI) {a(n)=local(A); if(n<1, 0, n--; A=x*O(x^n); polcoeff( eta(x+A)^3*eta(x^10+A)^6/ eta(x^2+A)^2/eta(x^5+A)^7, n))}
CROSSREFS
Sequence in context: A300219 A278817 A171746 * A183162 A309219 A019587
KEYWORD
sign
AUTHOR
Michael Somos, Nov 10 2005
STATUS
approved