login
A113928
(RSA-768)+10^n = prime where RSA-768 is the 232 decimal digit RSA challenge number.
0
70, 129, 178, 263, 337, 545, 708, 714, 867, 1317, 1587, 1961, 19415
OFFSET
1,1
COMMENTS
This sequence shows that the difference between a composite number and a prime rests on the modification of a single decimal digit of the given composite number.
EXAMPLE
(RSA-768) + 10^70 is prime.
MATHEMATICA
Position[PrimeQ[Table[ \
123018668453011775513049495838496272077285356959533479219732245215172640050726\
365751874520219978646938995647494277406384592519255732630345373154826850791702\
6122142913461670429214311602221240479274737794080665351419597459856902143413 \
+ 10^n, {n, 1232}]], True]
PROG
(PARI) \\ Set N to RSA-768
for(n=1, 1e5, if(ispseudoprime(N+10^n), print1(n", "))) \\ Charles R Greathouse IV, Oct 03 2011
CROSSREFS
Sequence in context: A024748 A024756 A254367 * A160354 A215111 A255801
KEYWORD
nonn
AUTHOR
Joao Carlos Leandro da Silva (zxawyh66(AT)yahoo.com), Jan 30 2006
EXTENSIONS
a(10)-a(12) from Charles R Greathouse IV, Oct 03 2011
a(13) from Charles R Greathouse IV, Oct 05 2011
No more terms below 30,000.
STATUS
approved