This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A113910 Integers of the form (Lucas(i+1) - 2*A006206(i+2))/(A006206(i+2) - A006206(i)), i > 2; Lucas = A000204. 2
 3, 7, 5, 9, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179, 191, 197, 227, 239, 269, 281, 311, 347, 419, 431, 461, 521, 569, 599, 617, 641, 659, 809, 821, 827, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1319, 1427, 1451, 1481, 1487 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Let p and p+2 be twin primes. Then Lucas(p) = 1 + p*A006206(p) and Lucas(p+2) = 1 + (p+2)*A006206(p+2). It follows from Lucas(n) + Lucas(n+1) = Lucas(n+2) that p = (Lucas(p+1) - 2*A006206(p+2))/(A006206(p+2) - A006206(p)) For i = 3, 4, 5, 6, 7, 8, 9, 10, 11: ((Lucas(i+1) - 2*A006206(i+2))/(A006206(i+2) - A006206(i))) = (3, 7, 5, 19/3, 31/4, 9, 87/10, 149/14, 11, 135/11, 663/50, 1094/77, 1787/120, 2939/181, 17, 7849/434, 12799/672, 20894/1041, 34031/1622, 55469/2514, 45131/1962, 146921/6115, 238915/9554, 194252/7465, 631347/23386, 1025917/36617, 29, 2706059/90178, 4393211/141710, 3565643/111405, 11573003/350702). - Creighton Dement, Jan 31 2006 LINKS FORMULA It is conjectured that a(n+4) = A001359(n+2) for all n. MAPLE # First 63 Terms with(combinat): with(numtheory): A006206 := proc(n) local sum; sum := 0; for d in divisors(n) do sum := sum + mobius(n/d)*(fibonacci(d+1)+fibonacci(d-1)) od; RETURN(sum/n); end; A000204 := n->fibonacci(n+1)+fibonacci(n-1); T := n -> (A000204(n+1) - 2*A006206(n+2))/(A006206(n+2)-A006206(n)); A113910 := []: for i from 3 by 1 to 2000 do if is(T(i) = floor(T(i))) then A113910 := [op(A113910), T(i)]; fi: od: A113910; # Creighton Dement, Jan 15 2009 CROSSREFS Cf. A000204, A006206, A001359. Sequence in context: A019809 A021270 A259565 * A264983 A265341 A094009 Adjacent sequences:  A113907 A113908 A113909 * A113911 A113912 A113913 KEYWORD nonn AUTHOR Creighton Dement, Jan 29 2006 EXTENSIONS Extended and Maple definition by Creighton Dement, Jan 15 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.