login
A113838
Palindromes sandwiched between twin primes.
1
4, 6, 282, 828, 858, 2112, 21012, 21612, 23832, 26262, 26862, 28182, 80208, 81018, 82728, 84348, 89598, 89898, 240042, 246642, 270072, 276672, 2035302, 2109012, 2136312, 2155512, 2182812, 2422242, 2428242, 2460642, 2499942, 2529252
OFFSET
1,1
COMMENTS
For n > 2, the first and last digit of a(n) are either 2 or 8. - Chai Wah Wu, Jan 06 2016
Intersection of A002113 and A014574. - Michel Marcus, Jan 08 2016
EXAMPLE
282 is a palindrome and 281 and 283 are twin primes.
MATHEMATICA
palQ[n_]:= n == FromDigits@Reverse@IntegerDigits@n; lst={}; Do[If[palQ[n] && PrimeQ[n-1] && PrimeQ[n+1], AppendTo[lst, n]], {n, 2, 10^7, 2}]; lst
palQ[n_]:=Module[{idn=IntegerDigits[n]}, idn==Reverse[idn]]; Mean[#]&/@ Select[ Select[ Partition[Prime[Range[190000]], 2, 1], Last[#]-First[#] == 2&], palQ[Mean[#]]&] (* Harvey P. Dale, Jan 18 2012 *)
PROG
(PARI) isok(n) = my(d = digits(n)); (Vecrev(d)==d) && isprime(n-1) && isprime(n+1); \\ Michel Marcus, Jan 08 2016
CROSSREFS
Cf. A002113 (palindrome), A014574 (average of twin prime pair).
Sequence in context: A141568 A376381 A376385 * A056831 A376383 A376387
KEYWORD
base,nonn
AUTHOR
Giovanni Resta, Jan 24 2006
STATUS
approved