login
Generalized Mancala solitaire (A002491); to get n-th term, start with n and successively round up to next 11 multiples of n-1, n-2, ..., 1, for n>=1.
11

%I #13 Sep 30 2022 08:55:31

%S 1,12,34,66,108,162,228,298,382,480,588,708,838,972,1114,1260,1428,

%T 1620,1812,2022,2242,2434,2662,2922,3228,3394,3702,3972,4302,4578,

%U 4908,5254,5610,5938,6318,6658,7038,7452,7800,8262,8688,9058,9480,9990,10474

%N Generalized Mancala solitaire (A002491); to get n-th term, start with n and successively round up to next 11 multiples of n-1, n-2, ..., 1, for n>=1.

%H <a href="/index/J#Josephus">Index entries for sequences related to the Josephus Problem</a>

%t f[n_] := Fold[ #2*Ceiling[ #1/#2 + 10] &, n, Reverse@Range[n - 1]]; Array[f, 46]

%Y Cf. {k=-1..12} A000012, A002491, A000960 (Flavius Josephus's sieve), A112557, A112558, A113742, A113743, A113744, A113745, A113746, A113747, A113749.

%K nonn

%O 1,2

%A _Paul D. Hanna_ and _Robert G. Wilson v_, Nov 05 2005