login
Generalized Mancala solitaire (A002491); to get n-th term, start with n and successively round up to next 9 multiples of n-1, n-2, ..., 1, for n>=1.
12

%I #9 Jun 23 2020 19:11:24

%S 1,10,28,54,90,132,180,240,318,394,480,570,672,778,898,1042,1174,1332,

%T 1474,1632,1812,1992,2160,2340,2580,2760,3018,3252,3502,3720,3972,

%U 4222,4498,4818,5118,5382,5718,6022,6378,6672,7038,7378,7714,8112,8430,8850

%N Generalized Mancala solitaire (A002491); to get n-th term, start with n and successively round up to next 9 multiples of n-1, n-2, ..., 1, for n>=1.

%H <a href="/index/J#Josephus">Index entries for sequences related to the Josephus Problem</a>

%t f[n_] := Fold[ #2*Ceiling[ #1/#2 + 8] &, n, Reverse@Range[n - 1]]; Array[f, 46]

%Y Cf. {k=-1..12} A000012, A002491, A000960 (Flavius Josephus's sieve), A112557, A112558, A113742, A113743, A113744, A113745, A113746, A113747, A113748; det. A113749.

%K nonn

%O 1,2

%A _Paul D. Hanna_ and _Robert G. Wilson v_, Nov 05 2005