login
Generalized Mancala solitaire (A002491); to get n-th term, start with n and successively round up to next 5 multiples of n-1, n-2, ..., 1, for n>=1.
11

%I #13 Sep 30 2022 08:54:15

%S 1,6,16,30,48,72,102,132,168,210,258,318,360,418,492,540,622,714,780,

%T 870,972,1054,1174,1260,1392,1488,1590,1714,1848,2022,2118,2292,2398,

%U 2580,2718,2878,3054,3234,3360,3570,3754,3948,4114,4318,4498,4710,4932

%N Generalized Mancala solitaire (A002491); to get n-th term, start with n and successively round up to next 5 multiples of n-1, n-2, ..., 1, for n>=1.

%H <a href="/index/J#Josephus">Index entries for sequences related to the Josephus Problem</a>

%t f[n_] := Fold[ #2*Ceiling[ #1/#2 + 4] &, n, Reverse@Range[n - 1]]; Array[f, 47]

%Y Cf. {k=-1..12} A000012, A002491, A000960 (Flavius Josephus's sieve), A112557, A112558, A113743, A113744, A113745, A113746, A113747, A113748; det. A113749.

%K nonn

%O 1,2

%A _Paul D. Hanna_ and _Robert G. Wilson v_, Nov 05 2005