login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113682 Expansion of 2/(sqrt(1-2*x-3*x^2)*(1+x+sqrt(1-2*x-3*x^2))). 8
1, 1, 4, 9, 26, 70, 197, 553, 1570, 4476, 12827, 36894, 106471, 308113, 893804, 2598313, 7567466, 22076404, 64498427, 188689684, 552675365, 1620567763, 4756614062, 13974168190, 41088418151, 120906613075, 356035078102 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Convolution of A002426 and A005043. Diagonal sums of A094531.

Hankel transform is A164611. - Paul Barry, Aug 17 2009

David Scambler observed that [1,0,a(n-2)] for n>=2 count the Dyck paths of semilength n such that the number of peaks equals the number of hills plus the number of returns. - Peter Luschny, Oct 22 2012

Conjectural supercongruences (working with an offset of 1): a(n*p^k) == a(n*p^(k-1)) ( mod p^(2*k) ) for prime p >= 5 and positive integers n and k. - Peter Bala, Mar 15 2020

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.

FORMULA

a(n) = Sum_{k=0..floor(n/2)} ( Sum_{i=0..n-k} C(n-2k-i, i)*C(n-k, k+i) ).

a(n) = Sum_{k=0..n} A002426(k)*A005043(n-k).

a(n) = Sum_{k=0..n} C(n+1,k+1)*C(k,n-k). - Paul Barry, Aug 21 2007

a(n) = (A002426(n+1) + (-1)^n)/2. - Paul Barry, Aug 17 2009

G.f.: d/dx log(1/(1-x*A005043(x))). - Vladimir Kruchinin, Apr 18 2011

D-finite with recurrence: (n+1)*a(n) +(-n-1)*a(n-1) +(-5*n+1)*a(n-2) +3*(-n+1)*a(n-3)=0. - R. J. Mathar, Nov 26 2012

Recurrence: (n+4)*a(n+3)-(n+4)*a(n+2)-(5*n+14)*a(n+1)-3*(n+2)*a(n)=0. Remark: this recurrence can be obtained using the identity a(n) = (t(n+1)+(-1)^n)/2 and the recurrence of the central trinomial coefficients t(n) = A002426(n). So, the above P-finite recurrences are true. - Emanuele Munarini, Dec 20 2016

a(n) = (-1)^(n+1) * (hypergeom([1/2, -n-1], [1], 4) - 1)/2. - Vladimir Reshetnikov, Apr 25 2016

a(n) = (-1)^n + A246437(n+1). - Vladimir Reshetnikov, Apr 25 2016

MATHEMATICA

ex[x_]:=Module[{sx=Sqrt[1-2x-3x^2]}, 2/(sx (1+x+sx))]; CoefficientList[ Series[ ex[x], {x, 0, 40}], x] (* Harvey P. Dale, May 28 2012 *)

Flatten[{1, Table[Coefficient[Sum[(1 + x + x^2)^k, {k, 0, n}], x^n], {n, 1, 30}]}] (* Vaclav Kotesovec, Jan 08 2016 *)

PROG

(Maxima) makelist((ultraspherical(n+1, -n-1, -1/2)+(-1)^n)/2, n, 0, 12); /* Emanuele Munarini, Dec 20 2016 */

(PARI) x='x+O('x^50); Vec(2/(sqrt(1-2*x-3*x^2)*(1+x+sqrt(1-2*x-3*x^2)))) \\ G. C. Greubel, Feb 28 2017

CROSSREFS

Cf. A217539, A217540.

Sequence in context: A226908 A328657 A335983 * A291064 A145855 A240042

Adjacent sequences:  A113679 A113680 A113681 * A113683 A113684 A113685

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Nov 04 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 24 22:57 EST 2020. Contains 338616 sequences. (Running on oeis4.)