login
A113539
a(n) is the minimal k such that 3^n +/- k are primes.
0
2, 4, 2, 14, 10, 26, 8, 80, 20, 20, 110, 64, 8, 16, 110, 106, 10, 280, 8, 166, 92, 364, 68, 310, 130, 836, 70, 364, 238, 434, 892, 1844, 58, 140, 10, 740, 482, 1274, 308, 494, 1220, 2644, 790, 646, 2248, 2456, 422, 314, 1072, 1124, 782, 200, 98, 1826, 1502
OFFSET
2,1
EXAMPLE
First term (at n=2) is a(2)=2 because 3^2 +/- 2 are primes; second term (at n=3) is a(3)=4 because 3^3 +/- 4 are primes.
MATHEMATICA
f[n_] := Block[{k = 2}, While[ !PrimeQ[3^n + k] || !PrimeQ[3^n - k], k += 2]; k]; Table[ f[n], {n, 2, 56}] (* Robert G. Wilson v *)
CROSSREFS
Sequence in context: A354408 A062867 A264027 * A215055 A152877 A071353
KEYWORD
nonn
AUTHOR
Zak Seidov, Jan 13 2006
EXTENSIONS
Corrected and extended by Robert G. Wilson v, Jan 18 2006
STATUS
approved