OFFSET
1,2
COMMENTS
The infinite Fibonacci word b(n) is the fixed point of the morphism 1->12, 2->1, starting from b(1) = 2. This transform a(n) of that sequence b(n) satisfies n <= a(n) <= 4*n, but that is not a tight bound.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
FORMULA
EXAMPLE
a(3) = 1^1 + 2^2 + 1^1 = 6.
a(4) = 1^1 + 2^1 + 1^2 + 1^1 = 5.
a(5) = 1^2 + 2^1 + 1^1 + 1^2 + 2^1 = 7.
a(6) = 1^1 + 2^2 + 1^1 + 1^1 + 2^2 + 1^1 = 12.
a(7) = 1^2 + 2^1 + 1^2 + 1^1 + 2^1 + 1^2 + 2^1 = 10.
a(8) = 1^1 + 2^2 + 1^1 + 1^2 + 2^1 + 1^1 + 2^2 + 1^1 = 15.
a(9) = 1^1 + 2^1 + 1^2 + 1^1 + 2^2 + 1^1 + 2^1 + 1^2 + 1^1 = 14.
a(10) = 1^2 + 2^1 + 1^1 + 1^2 + 2^1 + 1^2 + 2^1 + 1^1 + 1^2 + 2^1 = 14.
MATHEMATICA
A003842[n_] := n + 1 - Floor[((1 + Sqrt[5])/2)*Floor[2*(n + 1)/(1 + Sqrt[5])]]; Table[Sum[A003842[k]^(A003842[n - k + 1]), {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, May 18 2017 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jan 13 2006
EXTENSIONS
Corrected and extended by Giovanni Resta, Jun 13 2016
STATUS
approved