login
A113492
Least integers, starting with 1, so ascending descending base exponent transforms all triprimes.
2
1, 7, 11, 3, 3, 4, 3, 5, 11, 4, 1, 2, 1, 1, 4, 8, 8, 2, 2, 6, 6, 7, 7, 3, 1, 3, 4, 2, 7, 2, 2, 3, 2, 2, 4, 1, 3, 12, 5, 2, 2, 1, 3, 5, 3, 4, 4, 4, 14, 2, 1, 2, 11, 4, 6, 2, 1, 2, 7, 8, 4, 6, 1, 3, 1, 8, 1, 2, 4, 3, 12, 8, 1, 2, 11, 1, 2, 10, 2, 3, 3, 9, 1, 1
OFFSET
1,2
COMMENTS
This is the triprime analogy to A113320.
LINKS
FORMULA
a(1) = 1. For n > 1: a(n) = min {n > 0: Sum_{i=1..n} a(i)^a(n-i+1) is a triprime}. a(n) = min {n > 0: Sum_{i=1..n} a(i)^a(n-i+1) in A014612}.
EXAMPLE
a(1) = 1 by definition.
a(2) = 7 because 1^7 + 7^1 = 8 = 2^3 is a triprime (A014612).
MATHEMATICA
p3[n_] := PrimeOmega[n] == 3; inve[w_] := Total[w^Reverse[w]]; a[1] = 1; a[n_] := a[n] = Block[{k = 0}, While[! p3[ inve@ Append[ Array[a, n - 1], ++k]]]; k]; Array[a, 75] (* Giovanni Resta, Jun 13 2016 *)
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jan 10 2006
EXTENSIONS
Corrected and extended by Giovanni Resta, Jun 13 2016
STATUS
approved