login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113477 Decimal expansion of Gamma(1/3)^3/2^(4/3)/Pi. 1
2, 4, 2, 8, 6, 5, 0, 6, 4, 7, 8, 8, 7, 5, 8, 1, 6, 1, 1, 8, 1, 9, 9, 4, 1, 6, 8, 9, 7, 8, 0, 9, 3, 1, 2, 4, 8, 5, 5, 5, 0, 3, 4, 8, 4, 4, 8, 7, 4, 9, 0, 9, 2, 7, 4, 4, 1, 6, 6, 2, 9, 4, 1, 8, 8, 0, 5, 4, 0, 5, 6, 8, 7, 3, 6, 1, 7, 6, 9, 1, 7, 4, 4, 5, 4, 6, 7, 2, 7, 2, 7, 0, 8, 8, 8, 3, 5, 4, 4, 3, 8, 3, 9, 0, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

This number is transcendental from a result of Schneider on elliptic integrals.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000

Th. Schneider, Transzendenzuntersuchungen periodischer Funktionen, Journal für die reine und angewandte Mathematik (1935) Volume: 172, page 65-74.

Th. Schneider, Arithmetische Untersuchungen elliptischer Integrale, Mathematische Annalen (1937) Volume: 113, page I-XIII.

Index entries for transcendental numbers

FORMULA

Equals Integral_{x>=1} dx/sqrt(4*x^3-4).

EXAMPLE

2.428650647887581611819....

MATHEMATICA

RealDigits[Gamma[1/3]^3/(Pi*2^(4/3)), 10, 5001][[1]] (* G. C. Greubel, Mar 12 2017 *)

PROG

(PARI) gamma(1/3)^3/2^(4/3)/Pi

CROSSREFS

Cf. A085565.

Sequence in context: A278533 A204898 A240295 * A279350 A278221 A287879

Adjacent sequences:  A113474 A113475 A113476 * A113478 A113479 A113480

KEYWORD

cons,nonn

AUTHOR

Benoit Cloitre, Jan 08 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 00:30 EST 2019. Contains 329988 sequences. (Running on oeis4.)