OFFSET
0,6
COMMENTS
If presented in five rows a(5n) a(5n+1).. a(5n+4) each term is the sum of the previous term in the sequence and the partial sum of its row.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,2,-1).
FORMULA
G.f.: (1-x^5)/(1-x-2*x^5+x^6).
a(n) = a(n-1) + 2*a(n-5) - a(n-6).
a(n) = 11*a(n-5) -45*a(n-10) +90*a(n-15) -90*a(n-20) +37*a(n-25)-a(n-30).
MATHEMATICA
CoefficientList[Series[(1 - x^5)/(1 - x - 2*x^5 + x^6), {x, 0, 50}], x] (* G. C. Greubel, Mar 11 2017 *)
PROG
(PARI) x='x+O('x^50); Vec((1-x^5)/(1-x-2*x^5+x^6)) \\ G. C. Greubel, Mar 11 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Floor van Lamoen, Nov 04 2005
STATUS
approved