login
First row of A113439.
1

%I #11 Jul 20 2024 19:14:41

%S 1,2,8,34,146,627,2689,11521,49337,211233,904306,3871305,16572812,

%T 70947073,303719624,1300203634,5566087073,23828058969,102006385362,

%U 436682772844,1869410868456,8002827727921,34259590954322

%N First row of A113439.

%H G. C. Greubel, <a href="/A113440/b113440.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (9,-28,38,-20,1).

%F a(n) = A113439(4*n).

%F a(n) = 9*a(n-1) - 28*a(n-2) + 38*a(n-3) - 20*a(n-4) + a(n-5).

%F G.f.: -(1-7*x+18*x^2-20*x^3+8*x^4)/(-1+9*x-28*x^2+38*x^3-20*x^4+x^5).

%t CoefficientList[Series[-(1 - 7*x + 18*x^2 - 20*x^3 + 8*x^4)/(-1 + 9*x - 28*x^2 + 38*x^3 - 20*x^4 + x^5), {x,0,50}], x] (* _G. C. Greubel_, Mar 11 2017 *)

%t LinearRecurrence[{9,-28,38,-20,1},{1,2,8,34,146},30] (* _Harvey P. Dale_, Jul 20 2024 *)

%o (PARI) x='x+O('x^50); Vec(-(1-7*x+18*x^2-20*x^3+8*x^4)/(-1+9*x-28*x^2+38*x^3-20*x^4+x^5)) \\ _G. C. Greubel_, Mar 11 2017

%Y Cf. A113439.

%K nonn,easy

%O 0,2

%A _Floor van Lamoen_, Nov 04 2005