%I #5 Jun 13 2017 23:23:11
%S 1,3,1,15,12,1,136,168,21,1,1998,3190,483,30,1,41973,80136,13615,960,
%T 39,1,1166263,2553162,469476,35785,1599,48,1,40747561,99579994,
%U 19419225,1562220,74074,2400,57,1,1726907675,4624245724,944233801,79072620
%N Triangle, read by rows, equal to the matrix cube of A113370.
%F Column k of A113370^3 = column 0 of A113389^(3*k+1) for k>=0.
%e Triangle A113370^3 begins:
%e 1;
%e 3,1;
%e 15,12,1;
%e 136,168,21,1;
%e 1998,3190,483,30,1;
%e 41973,80136,13615,960,39,1;
%e 1166263,2553162,469476,35785,1599,48,1;
%e 40747561,99579994,19419225,1562220,74074,2400,57,1;
%e 1726907675,4624245724,944233801,79072620,3908034,132856,3363,66,1;
%o (PARI) T(n,k)=local(A,B);A=Mat(1);for(m=2,n+1,B=matrix(m,m); for(i=1,m, for(j=1,i,if(i<3 || j==i || j>m-1,B[i,j]=1,if(j==1, B[i,1]=1,B[i,j]=(A^(3*j-2))[i-j+1,1]));));A=B);(A^3)[n+1,k+1]
%Y Cf. A113370, A113389, A113379 (column 0), A113380 (column 1).
%K nonn,tabl
%O 0,2
%A _Paul D. Hanna_, Nov 14 2005