This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A113263 a(n) is the number of ways the set {1^3, 2^3, ..., n^3} can be partitioned into two sets of equal sums. 4
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 2, 62, 0, 0, 268, 356, 0, 0, 2287, 1130, 0, 0, 5317, 36879, 0, 0, 203016, 319415, 0, 0, 2124580, 1631750, 0, 0, 10953868, 41280525, 0, 0, 242899218, 472958485, 0, 0, 2984270739, 3419746788, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,15 COMMENTS a(n)=0 when n == 1 or 2 mod 4. LINKS Alois P. Heinz and Ray Chandler, Table of n, a(n) for n = 1..130 (first 100 terms from Alois P. Heinz) FORMULA a(n) is half the coefficient of x^0 in product(x^(k^3)+x^(k^-3), k=1..n). MAPLE A113263:=proc(n) local i, p, t; t:= NULL; p:=1; for i to n do p:=p*(x^(i^3)+x^(-i^3)); t:=t, coeff(p, x, 0)/2; od; t; end; MATHEMATICA p = 1; t = {}; Do[p = Expand[p(x^(n^3) + x^(-n^3))]; AppendTo[t, Select[ p, NumberQ[ # ] &]/2], {n, 56}]; t (* Robert G. Wilson v *) CROSSREFS Cf. A058498, A083527. Sequence in context: A059431 A289358 A271698 * A063658 A237053 A209777 Adjacent sequences:  A113260 A113261 A113262 * A113264 A113265 A113266 KEYWORD nonn AUTHOR Floor van Lamoen, Oct 21 2005 EXTENSIONS More terms from Robert G. Wilson v and Tony Noe, Oct 27 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.