The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A113229 Number of permutations avoiding the consecutive pattern 3412. 8
 1, 1, 2, 6, 23, 110, 631, 4223, 32301, 277962, 2657797, 27954521, 320752991, 3987045780, 53372351265, 765499019221, 11711207065229, 190365226548070, 3276401870322033, 59523410471007913, 1138295039078030599, 22856576346825690128, 480807130959249565541 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) is the number of permutations on [n] that avoid the consecutive pattern 3412 (also number that avoid 2143). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..200 (terms n = 0..60 from Ray Chandler) A. Baxter, B. Nakamura, and D. Zeilberger. Automatic generation of theorems and proofs on enumerating consecutive Wilf-classes V. Dotsenko and A. Khoroshkin, Shuffle algebras, homology, and consecutive pattern avoidance, arXiv preprint arXiv:1109.2690 [math.CO], 2011. Sergi Elizalde, Asymptotic enumeration of permutations avoiding generalized patterns, arXiv:math/0505254 [math.CO], 2005. Sergi Elizalde, Asymptotic enumeration of permutations avoiding generalized patterns, Adv. in Appl. Math. 36 (2006), no. 2, 138-155. S. Elizalde and M. Noy, Consecutive patterns in permutations, Adv. Appl. Math. 30 (2003), 110-125. Steven Finch, Pattern-Avoiding Permutations [Broken link?] Steven Finch, Pattern-Avoiding Permutations [Cached copy, with permission] FORMULA The Dotsenko et al. reference gives a g.f. There is an associated triangle of numbers c_{n,l} that should be added to the OEIS if it is not already present. a(n) ~ c * d^n * n!, where d = 0.9561742431150784273897350385923872770208469..., c = 1.1465405299007850875068632404058971045769... . - Vaclav Kotesovec, Aug 23 2014 EXAMPLE The 5! - a(5) = 10 permutations on  not counted by a(5) are 14523, 24513, 34125, 34512, 35124, 43512, 45123, 45132, 45231, 53412. MAPLE b:= proc(u, o, t) option remember; `if`(u+o=0, 1,       add(b(u-j, o+j-1, `if`(t>0 and j>t, t-j, 0)), j=1..u)+       add(b(u+j-1, o-j, j), j=`if`(t<0, 1-t, 1)..o))     end: a:= n-> b(n, 0\$2): seq(a(n), n=0..25);  # Alois P. Heinz, Nov 07 2013 MATHEMATICA b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[b[u-j, o+j-1, If[t>0 && j>t, t-j, 0]], {j, 1, u}] + Sum[b[u+j-1, o-j, j], {j, Range[If[t<0, 1-t, 1], o]}]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 13 2015, after Alois P. Heinz *) CROSSREFS Cf. A113228, A117156, A117158, A117226, A201692, A201693. Column k=0 of A264319. Sequence in context: A117226 A117156 A201692 * A113228 A201693 A063255 Adjacent sequences:  A113226 A113227 A113228 * A113230 A113231 A113232 KEYWORD nonn AUTHOR David Callan, Oct 19 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 4 16:41 EDT 2022. Contains 357239 sequences. (Running on oeis4.)