The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A113224 a(2n) = A002315(n), a(2n+1) = A082639(n+1). 10
 1, 2, 7, 16, 41, 98, 239, 576, 1393, 3362, 8119, 19600, 47321, 114242, 275807, 665856, 1607521, 3880898, 9369319, 22619536, 54608393, 131836322, 318281039, 768398400, 1855077841, 4478554082, 10812186007, 26102926096, 63018038201 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS From Paul D. Hanna, Oct 22 2005: (Start) The logarithmic derivative of this sequence is twice the g.f. of A113282, where a(2*n) = A113282(2*n), a(4*n+1) = A113282(4*n+1) - 3, a(4*n+3) = A113282(4*n+3) - 1. Equals the self-convolution of integer sequence A113281. (End) With an offset of 1, this sequence is the case P1 = 2, P2 = 0, Q = -1 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 19 2015 LINKS C. Dement, Floretion Online Multiplier. H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277. H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume. Index entries for linear recurrences with constant coefficients, signature (2,2,-2,-1). FORMULA G.f.: (1+x^2)/((x-1)*(x+1)*(x^2+2*x-1). a(n+2) - a(n+1) - a(n) = A100828(n+1). a(n) = -(u^(n+1)-1)*(v^(n+1)-1)/2 with u = 1+sqrt(2), v = 1-sqrt(2). - Vladeta Jovovic, May 30 2007 a(n) = n * Sum_{k=1..n} Sum_{i=ceiling((n-k)/2)..n-k} binomial(i,n-k-i)*binomial(k+i-1,k-1)*(1-(-1)^k)/(2*k). - Vladimir Kruchinin, Apr 11 2011 a(n) = A001333(n+1) - A000035(n). - R. J. Mathar, Apr 12 2011 a(n) = floor((1+sqrt(2))^(n+1)/2). - Bruno Berselli, Feb 06 2013 From Peter Bala, Mar 19 2015: (Start) a(n) = (1/2) * A129744(n+1). exp( Sum_{n >= 1} 2*a(n-1)*x^n/n ) = 1 + 2*Sum_{n >= 1} Pell(n) *x^n. (End) MATHEMATICA a[n_] := n*Sum[ Sum[ Binomial[i, n-k-i]*Binomial[k+i-1, k-1], {i, Ceiling[(n-k)/2], n-k}]*(1-(-1)^k)/(2*k), {k, 1, n}]; Table[a[n], {n, 1, 29}] (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *) CoefficientList[Series[(1 + x^2) / ((x^2 - 1) (x^2 + 2 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 20 2015 *) LinearRecurrence[{2, 2, -2, -1}, {1, 2, 7, 16}, 30] (* Harvey P. Dale, Oct 10 2017 *) PROG Floretion Algebra Multiplication Program, FAMP Code: -2ibaseiseq[B*C], B = - .5'i + .5'j - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'; C = + .5'i + .5i' + .5'ii' + .5e (PARI) {a(n)=local(x=X+X*O(X^n)); polcoeff((1+x^2)/(1-x^2)/(1-2*x-x^2), n, X)} \\ Paul D. Hanna (Maxima) a(n):=n*sum(sum(binomial(i, n-k-i)*binomial(k+i-1, k-1), i, ceiling((n-k)/2), n-k)*(1-(-1)^k)/(2*k), k, 1, n); /* Vladimir Kruchinin, Apr 11 2011 */ (Magma) [Floor((1+Sqrt(2))^(n+1)/2): n in [0..30]]; // Vincenzo Librandi, Mar 20 2015 CROSSREFS Cf. A113225, A002315, A082639, A100828, A113281, A113282, A113283, A113284, A129744. Sequence in context: A131727 A320236 A073371 * A178945 A309561 A026571 Adjacent sequences: A113221 A113222 A113223 * A113225 A113226 A113227 KEYWORD nonn,easy AUTHOR Creighton Dement, Oct 18 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 21:57 EST 2022. Contains 358671 sequences. (Running on oeis4.)