login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113217 Parity of decimal digital root of n. 3
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Except for the first element, the sequence is periodic (with a period of length 9).  The sequence corresponds to that produced by a prescribed set of bitwise operations.  The (sub)sequence is produced starting from input pairs (0,1),(1,1),(1,0).  For example, (0,1) acted on (in succession) by [and,xor,or,xor,or,and,or,and,xor], with the same operation set then repeated.  For clarity, the example is AND(0,1) is 0.  XOR(1,0) is 1.  OR(0,1) is 1.  XOR(1,1) is 0.  OR(1,0) is 1.  AND(0,1) is 0.  OR(1,0) is 1.  AND(0,1) is 0.  XOR(1,0) is 1.  Repeat.  The analysis was done using Gnumeric's built-in functions.  In this example, the inputs align to n=2,3, and the operation results to the next 7 elements.  The (3) starting input pairs mentioned begin at bitwise operator positions 1,2 and 5. - Bill McEachen, May 24 2014

LINKS

Table of n, a(n) for n=0..104.

MathWorld, Digital Root

FORMULA

a(n) = A010888(n) mod 2.

a(n) = if n mod 9 = 1 then 1 else 1 - a(n-1), a(0)=0.

a(n) = A000035(A010888(n)). - Omar E. Pol, Oct 28 2013

CROSSREFS

Cf. A113218.

Sequence in context: A134452 A073445 A179081 * A147781 A082446 A144611

Adjacent sequences:  A113214 A113215 A113216 * A113218 A113219 A113220

KEYWORD

nonn,base,easy

AUTHOR

Reinhard Zumkeller, Oct 18 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 21 22:56 EST 2018. Contains 299427 sequences. (Running on oeis4.)