%I #19 May 15 2019 11:10:09
%S 1,4,6,4,9,7,3,5,2,0,7,1,7,9,2,7,1,6,7,1,9,7,0,4,0,4,0,7,6,7,8,6,4,0,
%T 3,9,6,3,0,7,9,3,2,3,6,6,6,6,6,0,4,9,6,8,9,0,5,2,8,9,0,3,9,4,7,9,5,4,
%U 9,2,2,7,6,1,9,1,0,2,5,8,2,3,6,5,5,5,9,3,1,1,3,7,5,9,5,2,9,4,9,1,4,3
%N Decimal expansion of log(5)/log(3).
%C Capacity dimension of the box fractal.
%C Hausdorff dimension of the graph of Bourbaki's function. McCollum: We examine Bourbaki's function, an easily-constructed continuous but nowhere-differentiable function, and explore properties including functional identities, the antiderivative, and the Hausdorff dimension of the graph. - _Jonathan Vos Post_, Sep 15 2010
%H James McCollum, <a href="http://arxiv.org/abs/1009.2817">Properties of Bourbaki's Function</a>, Sep 15, 2010.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BoxFractal.html">Box Fractal</a>
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%F Equals A016628 divided by A002391. - _R. J. Mathar_, Sep 08 2013
%e 1.4649735207179...
%p Digits:=100: evalf(log(5)/log(3)); # _Wesley Ivan Hurt_, Jul 07 2014
%t RealDigits[Log[3, 5], 10, 100][[1]] (* _Alonso del Arte_, Jul 07 2014 *)
%o (PARI) log(5)/log(3) \\ _Charles R Greathouse IV_, May 15 2019
%Y Cf. A152914.
%K nonn,cons,easy
%O 1,2
%A _Eric W. Weisstein_, Oct 17 2005