login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113195 a(n) = product{p=primes} F(p^(m_{n,p})), where p^(m_{n,p}) is highest power of p dividing n, m= nonnegative integer and F(k) is the k-th Fibonacci number. 2
1, 1, 2, 3, 5, 2, 13, 21, 34, 5, 89, 6, 233, 13, 10, 987, 1597, 34, 4181, 15, 26, 89, 28657, 42, 75025, 233, 196418, 39, 514229, 10, 1346269, 2178309, 178, 1597, 65, 102, 24157817, 4181, 466, 105, 165580141, 26, 433494437, 267, 170, 28657, 2971215073 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

F(p^j) is always coprime to F(q^k), where p and q are distinct primes and j and k are nonnegative integers.

LINKS

Table of n, a(n) for n=1..47.

FORMULA

Multiplicative with a(p^e) = F(p^e). - Franklin T. Adams-Watters, Jun 05 2006

EXAMPLE

45 = 3^2 * 5^1, so a(45) = F(3^2) * F(5^1) = 34 * 5 = 170.

MATHEMATICA

b[t_]:=Fibonacci[First[t]^Last[t]] a[n_]:=Apply[Times, Map[b, FactorInteger[n]]] (Peuha)

PROG

(PARI) for(n=1, 100, f=factor(n); p=1; for(i=1, matsize(f)[1], p*=fibonacci(f[i, 1]^f[i, 2])); print1(p, ", ")) (Klasen)

CROSSREFS

Cf. A113196.

Sequence in context: A060442 A060385 A080648 * A069110 A238684 A202694

Adjacent sequences:  A113192 A113193 A113194 * A113196 A113197 A113198

KEYWORD

nonn,mult

AUTHOR

Leroy Quet, Oct 17 2005

EXTENSIONS

More terms from Esa Peuha (esa.peuha(AT)helsinki.fi) and Lambert Klasen (lambert.klasen(AT)gmx.net), Oct 26 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 25 23:44 EST 2014. Contains 250017 sequences.