login
A113192
Primes that are the difference of two Lucas numbers; primes in A113191.
4
2, 3, 5, 7, 11, 17, 29, 43, 47, 73, 181, 197, 199, 293, 311, 503, 521, 839, 1361, 2131, 2203, 2207, 3571, 5749, 9349, 13763, 23633, 24469, 24473, 38239, 103483, 103681, 161983, 167759, 271367, 399601, 439081, 439157, 709283, 1692737, 3010349
OFFSET
1,1
COMMENTS
The difference L(i)-L(j) equals the sum L(j+1)+...+L(i+2).
EXAMPLE
The prime 181 is here because it is L(11)-L(6).
MATHEMATICA
Lucas[n_] := Fibonacci[n+1]+Fibonacci[n-1]; lst={}; Do[p=Lucas[n]-Lucas[i]; If[PrimeQ[p], AppendTo[lst, p]], {n, 2, 40}, {i, 0, n-2}]; Union[lst]
CROSSREFS
Cf. A000032 (Lucas numbers), A001606 (Lucas(n) is prime), A113193 (number of times that Lucas(n)-Lucas(i) is prime for i=0..n-3).
Sequence in context: A356627 A127272 A238528 * A077673 A071255 A062294
KEYWORD
nonn
AUTHOR
T. D. Noe, Oct 17 2005
STATUS
approved