This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A113170 Ascending descending base exponent transform of odd numbers A005408. 2
 1, 4, 33, 376, 5665, 115356, 3014209, 95722288, 3619661121, 161338248820, 8349617508961, 493959321484584, 33041900704133473, 2479933070973253516, 207343189445230918785, 19175058576632809926496, 1949302342535131018462849, 216707770770991401785821668 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A003101 is the ascending descending base exponent transform of natural numbers A000027. The ascending descending base exponent transform applied to the Fibonacci numbers is A113122; applied to the tribonacci numbers is A113153; applied to the Lucas numbers is A113154. The parity of this sequence cycles odd, even, odd, even, ... There is no nontrivial integer fixed point of the transform. LINKS G. C. Greubel, Table of n, a(n) for n = 1..295 FORMULA a(1) = 1. For n>1: a(n) = Sum_{i=1..n} (2n+1)^(2n-i). EXAMPLE a(2) = 4 because 1^3 + 3^1 = 1 + 3 = 4. a(3) = 33 because 1^5 + 3^3 + 5^1 = 1 + 27 + 5 = 33. a(4) = 406 because 1^7 + 3^5 + 5^3 + 7^1 = 1 + 243 + 125 + 7 = 376. a(5) = 5665 because 1^9 + 3^7 + 5^5 + 7^3 + 9^1 = 5665. a(6) = 115356 = 1^11 + 3^9 + 5^7 + 7^5 + 9^3 + 11^1. a(7) = 3014209 = 1^13 + 3^11 + 5^9 + 7^7 + 9^5 + 11^3 + 13^1. a(8) = 95722288 = 1^15 + 3^13 + 5^11 + 7^9 + 9^7 + 11^5 + 13^3 + 15^1. a(9) = 3619661121 = 1^17 + 3^15 + 5^13 + 7^11 + 9^9 + 11^7 + 13^5 + 15^3 + 17^1. a(10) = 161338248820 = 1^19 + 3^17 + 5^15 + 7^13 + 9^11 + 11^9 + 13^7 + 15^5 + 17^3 + 19^1. MATHEMATICA Table[Sum[(2 k + 1)^(2 n - 2 k + 1), {k, 1, n}], {n, 0, 10}] + 1 (* G. C. Greubel, May 18 2017 *) PROG (PARI) for(n=0, 25, print1(1 + sum(k=1, n, (2*k+1)^(2*n-2*k+1)), ", ")) \\ G. C. Greubel, May 18 2017 CROSSREFS Cf. A005408, A113122, A113153, A113154. Sequence in context: A075132 A303919 A208961 * A187738 A198900 A166906 Adjacent sequences:  A113167 A113168 A113169 * A113171 A113172 A113173 KEYWORD easy,nonn AUTHOR Jonathan Vos Post, Jan 06 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 05:44 EDT 2018. Contains 316259 sequences. (Running on oeis4.)