login
A113149
Row 8 of table A113143; equal to INVERT of 8-fold factorials shifted one place right.
1
1, 1, 2, 12, 176, 4184, 134824, 5451528, 264710536, 14992543432, 969925065992, 70547721068232, 5697913588192520, 505926926171909576, 48979597517592503560, 5134435963996172979912, 579379155027833982679816
OFFSET
0,3
FORMULA
a(n) = Sum_{j=0..k} 8^(k-j)*A111146(k, j).
a(0) = 1; a(n+1) = Sum_{k=0..n} a(k)*A045755(n-k).
EXAMPLE
A(x) = 1 + x + 2*x^2 + 12*x^3 + 176*x^4 + 4184*x^5 +...
= 1/(1 - x - x^2 - 9*x^3 - 153*x^4 -...- A045755(n)*x^(n+1)
-...).
PROG
(PARI) {a(n)=local(x=X+X*O(X^n)); A=1/(1-x-x^2*sum(j=0, n, x^j*prod(i=0, j, 8*i+1))); return(polcoeff(A, n, X))}
CROSSREFS
Cf. A113143, A045755 (8-fold factorials).
Sequence in context: A231085 A059522 A271857 * A156143 A007129 A125861
KEYWORD
nonn
AUTHOR
STATUS
approved