login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113070 Expansion of ((1+x)/(1-2x))^2. 2
1, 6, 21, 60, 156, 384, 912, 2112, 4800, 10752, 23808, 52224, 113664, 245760, 528384, 1130496, 2408448, 5111808, 10813440, 22806528, 47972352, 100663296, 210763776, 440401920, 918552576, 1912602624, 3976200192, 8254390272, 17112760320 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Binomial transform is A014915. In general, ((1+x)/(1-r*x))^2 expands to a(n) = ((r+1)*r^n*((r+1)*n + r - 1) + 0^n)/r^2, which is also a(n) = Sum_{k=0..n} C(n,k)*Sum_{j=0..k} (j+1)*(r+1)^j. This is the self-convolution of the coordination sequence for the infinite tree with valency r.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-4).

FORMULA

G.f.: (1+x)^2/(1-2x)^2;

a(n) = 3*2^n(3n+1)/4 + 0^n/4;

a(n) = Sum_{k=0..n} A003945(k)*A003945(n-k);

a(n) = Sum_{k=0..n} C(n, k)*Sum_{j=0..k} (j+1)*3^j.

a(n) = 4*a(n-1) - 4*a(n-2); a(0)=1, a(1)=6, a(2)=21. - Harvey P. Dale, May 20 2011

MATHEMATICA

Join[{1}, LinearRecurrence[{4, -4}, {6, 21}, 30]] (* or *) CoefficientList[ Series[((1+x)/(1-2x))^2, {x, 0, 30}], x] (* Harvey P. Dale, May 20 2011 *)

PROG

(MAGMA) [3*2^n*(3*n+1)/4+0^n/4: n in [0..30]]; // Vincenzo Librandi, May 21 2011

CROSSREFS

Cf. A113071.

Sequence in context: A321257 A305120 A066524 * A009147 A012593 A276235

Adjacent sequences:  A113067 A113068 A113069 * A113071 A113072 A113073

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Oct 14 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 14:46 EDT 2020. Contains 337321 sequences. (Running on oeis4.)