login
A113065
a(n) = denominator of r(n), where r(n) = the continued fraction of rational terms [1,3/2,11/6,...,H(n)], where H(n) = sum{j=1..n} 1/j, the n-th harmonic number.
2
1, 3, 45, 1341, 216117, 12198933, 5033340279, 4308570125919, 34267321328538951, 280288242453582014931, 25856932235044095350623341, 2439612204830872620697726926561, 3054068039108858195570513558702127273
OFFSET
1,2
EXAMPLE
For n = 3 we have 1 + 1/(3/2 + 6/11) = 67/45, the denominator of which is 45.
PROG
;; PLT DrScheme (Joshua Zucker)
;; (harmonic n) gives the n-th partial sum of the harmonic series.
;; cf->frac is a utility that converts a continued fraction to a fraction.
(define (A113065 n)
(denominator (cf->frac (build-list n (lambda (k) (harmonic (add1 k)))))))
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Leroy Quet, Oct 13 2005
EXTENSIONS
More terms from Joshua Zucker, May 08 2006
STATUS
approved