login
A113059
a(n) = n! * Sum_{k=0..n} A000296(k)/k!.
2
1, 1, 3, 10, 44, 231, 1427, 10151, 81923, 740732, 7425042, 81773715, 981864897, 12767876941, 178774288331, 2681781213130, 42909715480460, 729474427239587, 13130613291110603, 249482261007109579, 4989650444408388515, 104782705832468197252, 2305219956684224457858
OFFSET
0,3
LINKS
FORMULA
a(n) = (-1)^n*n!*Sum_{k >=0} LaguerreL(n, -n-1, k-1)/k!/exp(1), n>=0.
E.g.f.: exp(exp(x)-1-x)/(1-x).
a(n) ~ exp(exp(1)-2) * n!. - Vaclav Kotesovec, Jun 26 2022
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[Exp[Exp[x] - 1 - x]/(1 - x), {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, May 23 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace( exp(exp(x)-1-x)/(1-x))) \\ G. C. Greubel, May 23 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(Exp(x)-1-x)/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 23 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Karol A. Penson, Oct 12 2005
STATUS
approved