login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113041 Number of solutions to +-p(1)+-p(2)+-...+-p(2n-1) = 2, where p(i) is the i-th prime. 4
1, 0, 1, 3, 9, 27, 78, 249, 782, 2574, 8676, 29714, 102162, 356797, 1268990, 4521769, 16134137, 58061535, 210499244, 767154326, 2809323733, 10342098153, 38281849044, 142249547127, 527095215036, 1966843667482, 7368829743507, 27636276043171, 103876045792060 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

+-p(1)+-p(2)+-...+-p(2n) = 2 has no solutions, since the left hand side is odd.

LINKS

Alois P. Heinz and Ray Chandler, Table of n, a(n) for n = 1..1000 (first 120 terms from Alois P. Heinz)

FORMULA

a(n) = A022896(2n-1) + A261057(n). - M. F. Hasler, Aug 09 2015

MAPLE

A113041:=proc(n) local i, j, p, t; t:= NULL; for j to 2*n-1 by 2 do p:=1; for i to j do p:=p*(x^(-ithprime(i))+x^(ithprime(i))); od; t:=t, coeff(p, x, 2); od; t; end;

# second Maple program

sp:= proc(n) sp(n):= `if`(n=0, 0, ithprime(n)+sp(n-1)) end:

b := proc(n, i) option remember; `if`(n>sp(i), 0, `if`(i=0, 1,

        b(n+ithprime(i), i-1)+ b(abs(n-ithprime(i)), i-1)))

     end:

a:= n-> b(2, 2*n-1):

seq(a(n), n=1..30);  # Alois P. Heinz, Aug 05 2012

CROSSREFS

Cf. A022894 - A022904, A022920, A083309; A261061 - A261063 and A261045 (r.h.s. = -1); A261057, A261059, A261060 and A261044 (r.h.s. = -2); A113040, A113042.

Sequence in context: A006810 A090401 A181137 * A269650 A266497 A291020

Adjacent sequences:  A113038 A113039 A113040 * A113042 A113043 A113044

KEYWORD

nonn

AUTHOR

Floor van Lamoen, Oct 12 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 20 14:36 EDT 2019. Contains 326152 sequences. (Running on oeis4.)