login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113039 Number of ways the set {1,2,...,n} can be split into three subsets of which the three sums are consecutive. 1
0, 0, 1, 0, 3, 5, 0, 23, 52, 0, 254, 593, 0, 3611, 8859, 0, 55554, 142169, 0, 946871, 2466282, 0, 17095813, 45359632, 0, 323760077, 870624976, 0, 6367406592, 17307580710, 0, 129063054631, 353941332518, 0, 2682355470491, 7410591325928, 0, 56930627178287 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

The empty subset is not allowed, otherwise we would get a(2)=1. - Alois P. Heinz, Sep 03 2009

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..100

FORMULA

a(n) is the coefficient of x^3y in product(x^(-2k)+x^k(y^k+y^(-k)), k=1..n) for n>2.

EXAMPLE

For n=5 we have splittings 4/23/15, 4/5/123, 13/5/24, so a(5)=3.

MAPLE

A113039:=proc(n) local i, j, p, t; t:= 0, 0; for j from 3 to n do p:=1; for i to j do p:=p*(x^(-2*i)+x^(i)*(y^i+y^(-i))); od; t:=t, coeff(coeff(p, x, 3), y, 1); od; t; end;

# second Maple program:

b:= proc() option remember; local i, j, t; `if` (args[1]=0, `if` (nargs=2, 1, b(args[t] $t=2..nargs)), add (`if` (args[j] -args[nargs] <0, 0, b(sort ([seq (args[i] -`if` (i=j, args[nargs], 0), i=1..nargs-1)])[], args[nargs]-1)), j=1..nargs-1)) end: a:= proc(n) local m; m:= n*(n+1)/2; `if` (n>2 and irem (m, 3)=0, b(m/3-1, m/3, m/3+1, n), 0) end: seq (a(n), n=1..42); # Alois P. Heinz, Sep 03 2009

CROSSREFS

Cf. A112972.

Sequence in context: A318204 A306637 A111823 * A093016 A031018 A146525

Adjacent sequences:  A113036 A113037 A113038 * A113040 A113041 A113042

KEYWORD

nonn

AUTHOR

Floor van Lamoen, Oct 12 2005

EXTENSIONS

Extended beyond a(25) by Alois P. Heinz, Sep 03 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 08:36 EDT 2019. Contains 328107 sequences. (Running on oeis4.)