login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112969 a(1) = a(2) = 1; for n>2: a(n) = a(n-1)^4 + a(n-2)^4. 10
1, 1, 2, 17, 83537, 48698490414981559682, 5624216052381164150697569400035392464306474190030694298257552124199835791859537 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

A quartic Fibonacci sequence.

This is the quartic (or biquadratic) analog of the Fibonacci sequence similarly to A000283 being the quadratic analog of the Fibonacci sequence. The primes begin a(3), a(4), a(5).

LINKS

Table of n, a(n) for n=1..7.

Eric Weisstein's World of Mathematics, Quartic Equation.

FORMULA

a(n) ~ c^(4^n), where c = 1.0111288972169538887655499395580320278253918666919181401824606983217263409... . - Vaclav Kotesovec, Dec 18 2014

EXAMPLE

a(3) = 1^4 + 1^4 = 2.

a(4) = 1^4 + 2^4 = 17.

a(5) = 2^4 + 17^4 = 83537.

a(6) = 17^4 + 83537^4 = 48698490414981559682.

MATHEMATICA

RecurrenceTable[{a[1] ==1, a[2] == 1, a[n] == a[n-1]^4 + a[n-2]^4}, a, {n, 1, 8}] (* Vaclav Kotesovec, Dec 18 2014 *)

CROSSREFS

Cf. A000045, A000283.

Sequence in context: A163319 A269836 A114950 * A208208 A290189 A279883

Adjacent sequences:  A112966 A112967 A112968 * A112970 A112971 A112972

KEYWORD

easy,nonn

AUTHOR

Jonathan Vos Post, Jan 02 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 22 15:27 EST 2017. Contains 295089 sequences.