

A112899


A skew PellPascal triangle.


2



1, 0, 2, 0, 1, 5, 0, 0, 4, 12, 0, 0, 1, 14, 29, 0, 0, 0, 6, 44, 70, 0, 0, 0, 1, 27, 131, 169, 0, 0, 0, 0, 8, 104, 376, 408, 0, 0, 0, 0, 1, 44, 366, 1052, 985, 0, 0, 0, 0, 0, 10, 200, 1212, 2888, 2378, 0, 0, 0, 0, 0, 1, 65, 810, 3842, 7813, 5741, 0, 0, 0, 0, 0, 0, 12, 340, 3032, 11784
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Main diagonal is A000129. Row sums are A002605. Column sums are A006190(n+1).
A skewed version of the Riordan array (1/(12xx^2),x/(12xx^2)), see A054456 .  Philippe Deléham, Nov 21 2007
Triangle, read by rows, given by [0,1/2,1/2,0,0,0,0,0,...] DELTA [2,1/2,1/2,0,0,0,0,0,...] where DELTA is the operator defined in A084938. [From Philippe Deléham, Jan 30 2010]


LINKS

Table of n, a(n) for n=0..75.


FORMULA

G.f.: 1/(12xy(1+x/2)x^2*y^2); T(n, k)=sum{j=0..floor((2kn)/2), C(kj, nk)C(2kn, j)2^(2k2jn)}; T(n, k) = 2*T(n1, k1) + T(n2, k1) +T(n2, k2).


EXAMPLE

Rows begin
1;
0, 2;
0, 1, 5;
0, 0, 4, 12;
0, 0, 1, 14, 29;
0, 0, 0, 6, 44, 70;
0, 0, 0, 1, 27, 131, 169;
0, 0, 0, 0, 8, 104, 376, 408;


CROSSREFS

Cf. A111006, A112906 [From Philippe Deléham, Jan 30 2010]
Sequence in context: A244128 A016584 A293961 * A212808 A209687 A108263
Adjacent sequences: A112896 A112897 A112898 * A112900 A112901 A112902


KEYWORD

easy,nonn,tabl


AUTHOR

Paul Barry, Oct 05 2005


STATUS

approved



