This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A112884 Number of bits required to represent binomial(2^n, 2^(n-1)). 0
 2, 3, 7, 14, 30, 61, 125, 252, 508, 1019, 2043, 4090, 8186, 16377, 32761, 65528, 131064, 262135, 524279, 1048566, 2097142, 4194293, 8388597 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS FORMULA Appears to be equal to 2^n - floor(n / 2) G.f.: x*(-2*x^3 + 3*x - 2)/((x - 1)^2*(2*x^2 + x - 1)) [Conjectured by Harvey P. Dale, Apr 06 2011] EXAMPLE a(2) = 3 because binomial(2^2, 2^1) in binary = 110 MATHEMATICA Table[IntegerLength[Binomial[2^n, 2^(n-1)], 2], {n, 25}] (* or *) CoefficientList[Series[(-2 x^3+3x-2)/((x-1)^2 (2x^2+x-1)), {x, 0, 25}], x] (* Harvey P. Dale, Apr 06 2011 *) PROG (PHP): \$LastFact = gmp_init('1'); for (\$i = 2; \$i !== 65536; \$i *= 2) { \$Fact = gmp_fact(\$i); \$Result = gmp_div_q(\$Fact, gmp_pow(\$OldFact, 2)); \$LastFact = \$Fact; echo gmp_strval(\$Result, 2).'
'; } CROSSREFS a(n) represents the size of A037293 in binary - see also the central binomial coefficients: A001405. Sequence in context: A281716 A192570 A019595 * A103421 A205484 A151530 Adjacent sequences:  A112881 A112882 A112883 * A112885 A112886 A112887 KEYWORD easy,nonn AUTHOR Matt Erbst (matt(AT)erbst.org), Oct 04 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 03:32 EDT 2019. Contains 327209 sequences. (Running on oeis4.)