OFFSET
1,1
COMMENTS
From Jianing Song, Jun 16 2024: (Start)
Primes p such that A001176(p) = 1.
For p > 2, p is in this sequence if and only if A001175(p) == 2 (mod 4), and if and only if A001177(p) == 2 (mod 4). For a proof of the equivalence between A001176(p) = 1 and A001177(p) == 2 (mod 4), see Section 2 of my link below.
This sequence contains all primes congruent to 11, 19 (mod 20). This corresponds to case (3) for k = 3 in the Conclusion of Section 1 of my link below.
Conjecturely, this sequence has density 1/3 in the primes. (End) [Comment rewritten by Jianing Song, Jun 16 2024 and Jun 25 2024]
LINKS
T. D. Noe, Table of n, a(n) for n=1..1001
C. Ballot and M. Elia, Rank and period of primes in the Fibonacci sequence; a trichotomy, Fib. Quart., 45 (No. 1, 2007), 56-63 (The sequence B1).
Jianing Song, Lucas sequences and entry point modulo p
CROSSREFS
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+-----------+---------+---------
* and also A053032 U {2}
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 30 2007
STATUS
approved