|
|
A112819
|
|
Numbers k such that lcm(1,2,3,...,k)/15 equals the denominator of the k-th harmonic number H(k).
|
|
9
|
|
|
20, 24, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
When 15 occurs in A110566.
|
|
LINKS
|
Table of n, a(n) for n=1..32.
|
|
MATHEMATICA
|
a = h = 1; t = {}; Do[a = LCM[a, n]; h = h + 1/n; If[a/Denominator[h] == 15, AppendTo[t, n]], {n, 10^6}]; t
|
|
CROSSREFS
|
Cf. A002805, A003418, A110566.
Cf. A098464, A112813, A112814, A112815, A112816, A112817, A112818, A112820, A112821, A112822.
Sequence in context: A219392 A193572 A167323 * A070684 A295152 A292199
Adjacent sequences: A112816 A112817 A112818 * A112820 A112821 A112822
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Robert G. Wilson v, Sep 17 2005
|
|
EXTENSIONS
|
Definition corrected by Jinyuan Wang, May 03 2020
|
|
STATUS
|
approved
|
|
|
|