login
A112797
Pierpont 3-almost primes. 3-almost primes of form (2^K)*(3^L)+1.
6
28, 244, 325, 385, 730, 1025, 1729, 2188, 5185, 6562, 7777, 16385, 26245, 36865, 46657, 49153, 55297, 82945, 93313, 221185, 354295, 419905, 531442, 559873, 589825, 663553, 708589, 884737, 1119745, 1572865, 1594324, 1889569, 2985985
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Pierpont Prime
Eric Weisstein's World of Mathematics, Almost Prime
FORMULA
a(n) is in this sequence iff there exist nonnegative integers K and L such that Omega((2^K)*(3^L)+1) = 3.
EXAMPLE
a(1) = 28 = (2^0)*(3^3)+1 = 2 * 2 * 7.
a(2) = 244 = (2^0)*(3^5)+1 = 2 * 2 * 61.
a(3) = 325 = (2^2)*(3^4)+1 = 5 * 5 * 13.
a(4) = 385 = (2^7)*(3^1)+1 = 5 * 7 * 11.
a(11) = 7777 = (2^5)*(3^5)+1 = 7 * 11 * 101.
a(115) = 94143178828 = (2^0)*(3^23)+1 = 2 * 2 * 23535794707.
a(119) = 137438953473 = (2^37)*(3^0)+1 = 3 * 1777 * 25781083.
a(196) = 281474976710657 = (2^48)*(3^0)+1 = 193 * 65537 * 22253377.
MATHEMATICA
Take[Select[2^#[[1]] 3^#[[2]] + 1 & /@ Tuples[Range[0, 20], 2],
PrimeOmega[ #] == 3 &] // Union, 40] (* Harvey P. Dale, Jan 02 2021 *)
PROG
(PARI) list(lim)=my(v=List(), L=lim\1-1); for(e=0, logint(L, 3), my(t=3^e); while(t<=L, if(bigomega(t+1)==3, listput(v, t+1)); t*=2)); Set(v) \\ Charles R Greathouse IV, Feb 01 2017
CROSSREFS
Intersection of A014612 and A055600.
A005109 gives the Pierpont primes, which are primes of the form (2^K)*(3^L)+1.
A113432 gives the Pierpont semiprimes, 2-almost primes of the form (2^K)*(3^L)+1.
A111344 gives the Pierpont 4-almost primes, of the form (2^K)*(3^L)+1.
A111345 gives the Pierpont 5-almost primes, of the form (2^K)*(3^L)+1.
A111346 gives the Pierpont 6-almost primes, of the form (2^K)*(3^L)+1.
A113739 gives the Pierpont 7-almost primes, of the form (2^K)*(3^L)+1.
A113740 gives the Pierpont 8-almost primes, of the form (2^K)*(3^L)+1.
A113741 gives the Pierpont 9-almost primes, of the form (2^K)*(3^L)+1.
Sequence in context: A223347 A242436 A119544 * A085438 A188526 A219600
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Nov 08 2005
EXTENSIONS
Extended by Ray Chandler, Nov 08 2005
STATUS
approved