

A112736


Numbers whose square is exclusionary.


6



2, 3, 4, 7, 8, 9, 17, 18, 24, 29, 34, 38, 39, 47, 53, 54, 57, 58, 59, 62, 67, 72, 79, 84, 92, 94, 157, 158, 173, 187, 192, 194, 209, 237, 238, 247, 253, 257, 259, 307, 314, 349, 359, 409, 437, 459, 467, 547, 567, 612, 638, 659, 672, 673, 689, 712, 729, 738, 739, 749
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The number m with no repeated digits has an exclusionary square m^2 if the latter is made up of digits not appearing in m. For the corresponding exclusionary squares see A112735.


REFERENCES

H. Ibstedt, Solution to Problem 2623, "Exclusionary Powers", pp. 3469, Journal of Recreational Mathematics, Vol. 32 No.4 20034 Baywood NY.


LINKS

Giovanni Resta, Table of n, a(n) for n = 1..142 (full sequence)


MATHEMATICA

Select[Range[1000], Intersection[IntegerDigits[ # ], IntegerDigits[ #^2]] == {} && Length[Union[IntegerDigits[ # ]]] == Length[IntegerDigits[ # ]] &]  Tanya Khovanova, Dec 25 2006


CROSSREFS

Cf. A112321.
This is a subsequence of A029783 (Digits of n are not present in n^2) of numbers with all different digits. The sequence A059930 (Numbers n such that n and n^2 combined use different digits) is a subsequence of this sequence.
Sequence in context: A058075 A243495 A029783 * A059930 A125965 A111116
Adjacent sequences: A112733 A112734 A112735 * A112737 A112738 A112739


KEYWORD

nonn,base,fini,full


AUTHOR

Lekraj Beedassy, Sep 16 2005


EXTENSIONS

More terms from Tanya Khovanova, Dec 25 2006


STATUS

approved



